
Wind Power In India

Mahesh Vipradas Senergy Global Ltd.

Wind Power in India

- The wind power development is shaped by
 - Technology
 - Wind resource assessment
 - Wind turbines
 - Other technological developments
 - The Policy and Regulatory push / response

Wind Resource

- Wind resource
 - Low wind regime
 - Wind class 3 or lower
 - The wind turbines adjusted for low wind regime
 - Higher rotor diameter

Wind Resource

- Wind resource assessment and analysis techniques
 - Improved and wide spread wind resource assessment
 - Wind turbine micro-siting
 - Detailed simulation techniques for micrositing and energy generation projections
 - Use of satellite imagery for micro-siting
 - Accuracy levels of projections increasing

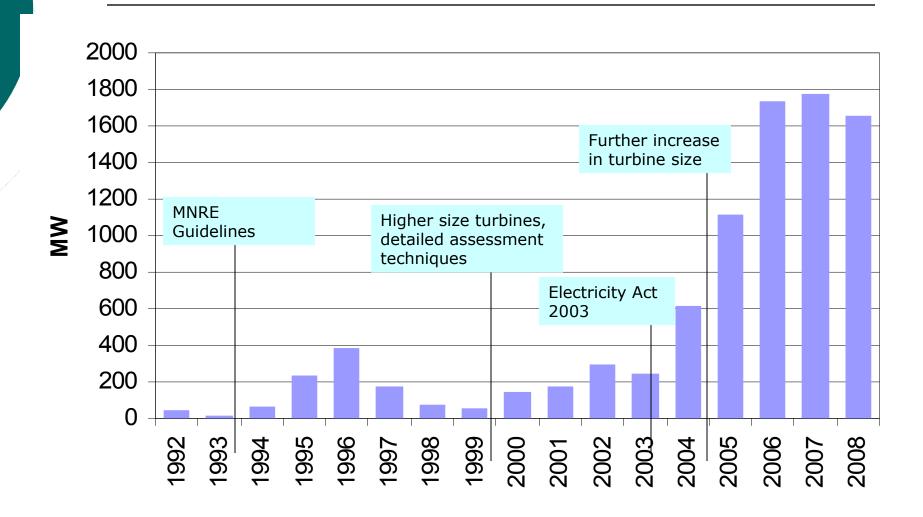
Wind Turbine

- Higher capacity turbines
 - From 250kW to 2MW
 - Avg. size of 359 kW in 2001 to more than 850kW in 2007
 - Lower land requirement
 - Lower O&M costs
 - Faster commissioning
 - Higher rotor diameter and hub heights
 - Rotor diameter 88m, Hub height 80m
- Advanced controls and sensors
 - Centralized monitoring and control systems
 - Higher machine availability 95-97%

Wind Turbine

- Materials
 - Composite materials for blades
 - Lower weight to swept area ratio
 - Concreter towers
- Other developments
 - Power electronics for better grid integration
 - Load flow studies

Wind Power


- Upcoming developments
 - Wind generation forecasting
 - Better grid integration and management
 - Grid integration techniques
 - Off shore wind assessment

- Guidelines by MNRE
- Fiscal Incentives
 - 80% accelerated depreciation allowed in the first year, under Section 32 of Income Tax
 - Companies can avail the derived tax shelter
- Section 80IA benefits on energy sales/savings
- The recent Generation Based Incentive scheme

- Electricity Regulatory Commissions Act 1998
 - The state commissions became the key player for determining tariff
- Electricity Act 2003
 - Section 86(i)e: The State Commission shall discharge the following functions,
 - Promote power generation from renewable sources of energy
 - Provide suitable measures for connectivity with the grid
 - specify a percentage of the total consumption of electricity to be procured from renewable sources

- The national electricity policy
 - Need for promotion of renewable energy
- National tariff policy
 - Step by step introduction of competition
 - Preferential tariff
 - Competition within same technology
 - Competition within renewables
 - Competition with other sources

- New initiatives
 - National Renewable Purchase Obligation
 - Mentioned in the action plan on Climate change
 - Renewable energy certificates
 - Generation based incentive

Case study of success story: SUZLON

About Suzlon

- Asia's largest wind power company
- World-wide No. 1 Company in terms of Market Capitalization.
- 5th Largest manufacturers in the world
- Market Leader in India for past 8 years
- Presence in Asia (India, China & South Korea), Europe, Australia, South & North America
- Technology development centers in Europe –
 Netherlands , Germany, Belgium & India.
- Manufacturing facilities for wind turbine generators, rotor blades & other critical components in India, China & USA

Case study: Suzlon

#1 Leveraging Best of All Worlds - Technology, Manufacturing and Market Opportunities

#2 Total Wind Energy Solutions Provider

#3 Backward Integration to Control Supply Chain, Reduce Costs and Quality Control

Case study: Suzlon

Leveraging on key locales for Technology, Manufacturing and Market

#1 - R&D in Europe

- Aerodynamics in Netherlands
- Product Engineering in Germany



3 – Focus on High Growth Markets with Onshore Potential:

- Global HQs in Denmark
- Key Markets in:
- Asia India and China
- US
- Australia
- Europe- Italy, France and Portugal

- Process engineering and field R&D
- Skilled manpower availability at low cost
- Backward integration leading to significant cost advantages and quality control

Product Portfolio

Model	Capacity (kW)	Hub Height (Meters)	Rotor Diameter (Meters)
S 33	350	60 / 70	33
S 52	600	74	52
S 64/66/70	1250	56 / 65 / 74	64 / 66 / 69.1
S 82	1500	78.5	82
S 88	2100	80	88

End to end wind energy solution provider in India

Infrastructure development

- Wind resource assessment
 - Land acquisition
- Evacuation facilities / substations

Technology development WTG and Component manufacturing

Project construction and execution

- · Installation and erection
 - Commissioning

Operations & maintenance

Lifetime services

Backward Integration

_	Location	Facility
	Daman	Turbine, Rotor blades & Control Systems
	Pondicharry	Turbine, Rotor blades & Control Systems
	Gandhidham	Tubular Tower
	Pune	Generator - JV with Elien
	Dhule	Rotor Blade, Tubular Tower
上	Vadodara	Tooling & Testing
THE PERSON NAMED IN	China	Turbine, Rotor Blades
101	USA	Rotor Blades
T.	Belgium	Gearbox

